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Abstract
Sun glare is one of the major environmental issues contributing to traffic crashes. Every year, many traffic crashes in the
United States are attributed to sun glare. However, quantitative analysis of the influence of sun glare on traffic crashes has
not been widely undertaken. This study used traffic crash narrative data for 7 years (2010–2016) from Louisiana to identify
crash reports that provided evidence of drivers indicating sun glare as the primary contributing factor of the crashes.
Additional geometry and traffic information was collected to identify the list of key crash-contributing factors. This study
used cluster correspondence analysis to perform the data analysis. After performing several iterations, six clusters were iden-
tified that provided additional insight in relation to sun glare-related crashes. The six clusters are associated with mixed (busi-
ness and residential) localities, intersection-related crashes on U.S. roadways, single-vehicle crashes on residential two-lane
undivided roadways, curve-related crashes on parish roadways in residential localities, interstate-related crashes in open
country localities, and curve-related crashes in open country localities. The findings of the current study can add insights to
the ongoing safety analysis on sun glare-related crashes.
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Sun glare occurs when the sun is low on the horizon,
usually an hour after dawn and before dusk. If the sun
glare is acute in nature, drivers usually experience a tem-
porary dazzling sensation that may turn into impairment
of vision (1). The safety of all road users may be nega-
tively affected by this impairment. It can be noted that
most modern-day vehicles have sun visors installed.
However, distraction caused by sun glare can occur if
the driver makes an unexpected turn, shifting their vision
range with the sun close to the immediate horizon (2).
The National Highway Traffic Safety Administration
reported sun glare as one of the safety concerns in sev-
eral hundred fatalities (3). Sun glare can be considered a
significant safety concern, and additional research is
needed to assess its nature and impact on road safety.

In many cases, the total number of traffic crashes
attributable to sun glare is under-reported. This is mostly
as a consequence of the nature of police crash reports. In
many cases, the law enforcement official considers sun
glare as one of many causes, but not as the sole cause, of
a crash, because of the overwhelmingly high number of

drivers who report that they are temporally blinded by
sun glare. The objective of this paper is to evaluate the
impact of sun glare on road safety in Louisiana as a case
study. To perform the data analysis, this study collected
7 years (2010–2016) of traffic crash data and police-
reported crash narratives from Louisiana. As crash data
contain a wide range of information, this study selected
variables of importance based on the information value
of the variable categories. The current study applied clus-
ter correspondence analysis to perform the analysis in a
way to select the association between key contributing
factors for sun glare-related crashes.

The rest of the paper is described as follows. First, a
brief literature review is provided. Then, in the
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methodology section, data preparation and exploratory
data analysis are described with a brief introduction to
the theory of cluster correspondence analysis. The next
section describes the results of the modeling with discus-
sions. The last section is conclusions, which describe
overall findings, limitations, and future directions.

Literature Review

Although earlier studies have identified direct exposure to
sunlight as an important contributory factor in crashes, with
the ability to impair visual performance by causing temporary
blindness (4, 5), only limited research has been performed.

Mitra obtained sunrise and sunset data from the
National Oceanic and Atmospheric Association (NOAA)
to identify glare-related crashes and compute daytime
windows with the worst possible glares (6). Using
ANOVA and chi-square test for proportions, the statisti-
cal tests confirm the strong influence of sun glare on traf-
fic collisions. Statistical evidence also shows that the
effects of glare are worse in early spring and early fall,
and less during summer. In a follow-up study using data
from signalized intersections in Tucson, Arizona, Mitra
assessed how sun glare affects intersection safety (7). A
comparison analysis was performed to differentiate
crashes that are caused by sun glare (morning and eve-
ning) from those unaffected by glare. Sunrise and sunset
data from the NOAA were used to compute windows
with the worst possible glare scenarios. The granular-level
analysis suggests that odds of glare-related crash inci-
dence are higher in east- and west-bound compared with
north- and south-bound directions. The harmful effects
of glare are found to be low during the summer months.
The results also show that sun glare affects rear-end and
right-angle crashes at signalized intersections.

Hagita and Mori analyzed crashes shortly before and
after sunset in China (8). Traffic crash rates shortly after
sunset were found to be higher than at any other time,
whereas the rate shortly before sunset was found to be
lower. The results also show that pedestrian crash counts
shortly after sunset were higher than at any other time. To
evaluate the degrees of sun glare effects, Li et al. proposed
the use of the publicly accessible Google Street View (GSV)
panorama images (9). They used a deep learning tool—
convolutional neural network algorithm—on the segmented
GSV images to predict obstruction-related safety concerns
attributable to sun glare. Additionally, this study predicted
the time windows of sun glare by calculating the sun posi-
tions and the relative angles between drivers and the sun for
the locations in Cambridge, Massachusetts. The results
showed precise prediction accuracies.

The literature review shows that there is a need for an
in-depth investigation to mitigate the current research
gaps in identifying the patterns of the associations

between key contributing factors by acquiring a compre-
hensive sun glare-related traffic crash data.

Methodology

Data Integration

This study obtained 7 years (2010–2016) of crash data
from the Louisiana Department of Transportation and
Development. The dataset has three major subfiles: (1)
crash file, (2) vehicle file, and (3) roadway inventory file.
The roadway inventory file contains information about
crash location, roadway type, traffic volume, segment
length, and other relevant geometric information. As
‘‘glare’’ or ‘‘sun glare’’ are not coded as key factors in the
structured crash dataset, this study used ‘‘crash narra-
tive’’ data to identify sun glare-related crashes. A set of
keywords (glare, glaring, sunglare, sunglaring, sun glare,
sun glaring) was used to identify the crash narratives
associated with glare-related crashes. A manual effort
was performed to identify sun glare-related crashes by
using time of the day of crash occurrence and manual
reading of the crash narrative reports. The final dataset
contains 1,450 sun glare-related crashes in Louisiana.

Exploratory Data Analysis

The selection of variables is an important step in con-
ducting crash data analysis. As the crash dataset con-
tains a wide range of different types of variables (e.g.,
numerical, integer, nominal, categorical, or ordinal), it is
important to determine the variables that can provide
intuitive knowledge about the crash occurrence. The pre-
liminary data-collection process includes crash (e.g., day
of week), roadway (e.g., presence of intersection), driver
(e.g., driver age), and vehicle (e.g., vehicle type) variables
in the analysis. It was noticed that there are significant
percentages of missing information in driver- and
vehicle-level data. The study is designed for the explora-
tion of crash and roadway-related variables only. This
study used both literature review findings and variable
importance method, using a random forest algorithm, to
identify the key variables associated with crashes. The
variables with high information value were later used for
the modeling. Table 1 lists the distribution of the cate-
gories of the selected variables by crash severity type. It
is interesting to see that none of the sun glare crashes are
associated with fatal crashes. Severe crashes are also
comparatively lower than other severity types.
Complaint crashes show a slightly higher percentage dur-
ing fall and spring seasons. Saturday shows a higher per-
centage of severe crashes than the other days of the
week. Cloudy weather is associated with more severe and
moderate crashes than other weather conditions. The
severity of intersection-related crashes shows around
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33% of crashes resulting in injuries. For segment or non-
intersection-related crashes, this percentage is 27%.
Access control and highway types do not show signifi-
cant differences among the percentage distributions.
Open country locations are associated with more severe
crashes than the other locality types. On-grade crashes
are disproportionately higher in percentages than other
alignment types.

Cluster Correspondence Analysis

Correspondence analysis, an unsupervised machine
learning method, can explore two-way and multi-way
tables that contain association between the rows and col-
umns from datasets with a wide range of categorical vari-
ables. Many recent transportation engineering studies
(10–25) have applied dimension-reduction methods to

Table 1. Distributing of Key Categories by Crash Severity

Variable Category Severe (A) Moderate (B) Complain (C) No injury (O)

Season Fall 0.5 7.2 24.9 67.4
Spring 0.3 8.2 19.8 71.7
Summer 0.0 5.3 22.5 72.2
Winter 0.4 6.4 21.5 71.6

Day of week Friday (FR) 0.0 8.5 23.4 68.2
Saturday (SA) 2.8 9.4 22.4 65.4
Sunday (SU) 0.0 11.4 21.4 67.1
Monday (MO) 0.0 6.1 25.0 69.0
Tuesday (TU) 0.8 5.5 19.8 73.8
Wednesday (WE) 0.4 5.5 24.1 70.0
Thursday (TH) 0.0 6.9 21.1 72.0

Weather Clear 0.4 7.2 22.9 69.6
Cloudy 1.7 3.5 19.0 75.9
Rain 0.0 0.0 0.0 100.0
Fog/smoke 0.0 0.0 0.0 100.0
Other 0.0 0.0 0.0 100.0

Intersection No 0.4 6.5 21.0 72.1
Yes 0.5 7.6 24.4 67.6

Access control Full control 1.5 6.1 18.2 74.2
No control 0.3 7.1 23.1 69.5
Partial control 1.2 5.8 17.2 75.9

Highway Interstate 1.3 6.3 15.2 77.2
U.S. highway 0.5 6.6 23.9 69.0
State highway 0.6 6.9 23.6 69.0
City street 0.2 7.4 23.2 69.2
Parish road 0.3 6.7 21.3 71.7
Toll road 0.0 0.0 50.0 50.0
Not reported 0.0 11.1 22.2 66.7

Land use Business continuous (cont.) 0.0 6.8 24.4 68.7
Industrial 0.0 5.7 11.4 82.9
Residential 0.6 6.0 18.7 74.6
Residential scattered (scatt.) 1.4 6.9 27.4 64.4
Mixed 0.2 7.6 22.0 70.2
Open country 2.7 9.5 23.0 64.9
School/playground 0.0 5.0 50.0 45.0

Roadway facility 2-way no seperation (sep.) 0.4 7.0 23.3 69.3
2-way with barrier (barr.) 0.0 13.0 15.2 71.7
2-way with sep. 0.6 6.2 21.4 71.7
One-way road 0.0 5.0 22.8 72.3
Other 0.0 14.3 21.4 64.3

Alignment Curve-level 0.0 7.1 14.3 78.6
Curve-level-elevation (elev.) 0.0 0.0 30.0 70.0
Dip, hump-straight 0.0 0.0 0.0 100.0
Hillcrest-curve 0.0 0.0 0.0 100.0
Hillcrest-straight 0.0 7.7 30.8 61.5
On grade-curve 0.0 16.7 0.0 83.3
On grade-straight 0.0 20.0 30.0 50.0
Straight-level 0.5 6.8 22.7 70.1
Straight-level-elev. 0.0 12.1 30.3 57.6
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solve engineering problems. Cluster correspondence anal-
ysis, a variant of the correspondence analysis framework,
utilizes both dimension reduction and cluster analysis for
nominal data. This approach concurrently allocates indi-
viduals to clusters and optimal scaling measures to the
variable categories. To determine the nature of the under-
lying cluster structures, this method outperforms other
correspondence analysis techniques. A brief overview of
cluster correspondence analysis is described here, which
is mostly based on the work conducted by Velden et al.
(26).

Initially, the data can be associated with n entities
(e.g., drivers involved in sun glare-related crashes) for p

categorical variables (for example, roadway alignment).
One can express it by a super indicator matrix Z with

n 3 Q dimension, where Q=
Pp

j= 1

qj. By using an indica-

tor matrix ZK , the user can develop a tabular format to
cross-tabulate cluster memberships with the nominal or
categorical variables such as F=Z0KZ, where ZK is the
n 3 K indicator matrix indicating cluster membership.
Application of the correspondence analysis framework
to this matrix populates optimal scaling values for rows
(as clusters) and columns (as categories). The clusters are
optimally separated in relation to the distributions over
the categorical variables in the two-dimensional plane.
Similarly, the categories differing distributions over the
clusters can be expressed as:

max;clusca ZK ,B
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DK =Z0KZk , a diagonal matrix with cluster sizes
Dz is a diagonal matrix so that Dz1Q =Z01n

An open-source software R package clustrd (27) was
used in performing the analysis. Based on the preliminary
results, the Calinski–Harabasz measure has been found
as the suitable measure. This measure, also known as
the valence ratio criterion, is the ratio of the sum of
between-clusters dispersion and of inter-cluster disper-
sion for all clusters. The performance can be expressed
by this measure. This measure is used for the applica-
tion of k-means clustering to complete clustering for
different k measures.

Results

Cluster Analysis Results

This study conducted the k-means runs randomly multi-
ple times to gain an optimal number of clustering. After
conducting the optimization technique, the final cluster
has been fixed at six. The objective criterion value of
the analysis is 3.9608. Figure 1 shows a two-dimensional
visualization known as biplot. This plot generalizes a
simplistic preview of two-variable scatterplots with the
text labels of the variable categories. One can project
individual subject points into this biplot illustration and
identify the variability within and between clusters. In the
framework of correspondence analysis, the origin indi-
cates the mean profile, and all other coordinates depict
variations from this mean profile. Four clusters (cluster

Figure 1. Coordinates of the variable categories and key clusters.
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1, 2, 3, and 4) are on the right side of the y-axis. The first
two clusters are in quadrant 1, and the other two are in
quadrant 4. The categories are closely placed for all of
these four clusters. The centroid of cluster 6 is located in
quadrant 2. The centroid of cluster 5 is far from all of the
remaining clusters.

Figures 2 and 3 distinctly confirm the graphical illus-
tration shown in Figure 1. It is important to establish the
number of optimum clusters. Figure 3 displays both the
centroids of the clusters (in blue ellipses) and variable
categories. Table 2 shows the key measures associated
with the cluster centroids, including the sample size (i.e.,
number and percentage of crashes within each cluster)
and coordinates. The first four clusters contain informa-
tion for 90% of the data. The least information is associ-
ated with cluster 6 (only 4.6% of data).

The six plots in Figures 2 and 3 display the 20 vari-
able categories for each cluster with the highest stan-
dardized residuals (positive or negative). A positive
(negative) residual indicates the category has an above
(below) average frequency within the cluster. To inter-
pret the results, the categories’ positive residual means
are usually explained. An advantage of this approach is
the ability to generate ‘‘in cluster’’ proportions of the
categories.

Cluster 1. This cluster has five categories with positive
residual means: mixed location, industrial area, city
street, state highway, and rear-end collision (Figure 2a).
This indicates an association of sun glare-related rear-
end collisions on city streets or state highways in indus-
trial areas. The findings are in line with Mitra (7).

Figure 2. Top 20 largest standardized residuals per cluster (cluster 1–3): (a) standardized residuals in cluster 1; (b) standardized
residuals in cluster 2; (c) standardized residuals in cluster 3.
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Cluster 2. This cluster has eight categories with positive
residual means: right-angle collision, intersection, U.S.
highway, business area, 2-way road with separation,

collision while turning right in the same direction, state
highway, and Saturday (Figure 2b). This indicates that
sun glare-related right-angle collisions are associated

Figure 3. Top 20 largest standardized residuals per cluster (cluster 4–6): (a) standardized residuals in cluster 4; (b) standardized
residuals in cluster 5; (c) standardized residuals in cluster 6.

Table 2. Location of the Cluster Centroids

Cluster Sample size (%) Sum of squares Dimension 1 Dimension 2

Cluster 1 489 (33.7) 0.0226 0.0056 0.0041
Cluster 2 386 (26.6) 0.0230 0.0062 0.0215
Cluster 3 263 (18.1) 0.0145 0.0078 20.0148
Cluster 4 172 (11.9) 0.0199 0.0077 20.0367
Cluster 5 74 (5.1) 0.0336 20.0878 20.0030
Cluster 6 66 (4.6) 0.0169 20.0302 0.0018
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with intersections on 2-way roads with separation on
either state or U.S. highways. These collisions were also
associated with business areas on Saturdays.

Cluster 3. This cluster has eight categories with positive resi-
dual means: residential area, parish road, located near a
school or playground, residential scattered area, 2-way road
with no separation, Tuesday, single-vehicle collision, and
other collision type (Figure 2c). This cluster indicates an
association of single-vehicle collisions on 2-way parish roads
with no separation and residential or school areas. The
results are in agreement with other previous studies (6–8).

Cluster 4. This cluster has 12 categories with positive resi-
dual means: parish road, residential area, sideswipe colli-
sion from the opposite direction, single-vehicle collision,
head-on collision, collision while turning right in the
opposite direction, curve-level alignment, no intersection,
pedestrian action as a contributing factor, obscured
vision as a contributing factor, 2-way road with no
separation, and other collision types (Figure 3a). This
cluster indicated an association among many variables.
Single-vehicle collisions, head-on collisions, sideswipe
collisions from the opposite direction, and collisions
turning right from the opposite direction were associated
with curve-level alignment and no intersection. They
were also associated with both pedestrian action and
impaired vision as a contributing factor. Other studies
also found similar results (6, 8).

Cluster 5. This cluster has 13 categories with positive resi-
dual means: interstate, full control, open country area,
straight-level elevated alignment, one-way road, 2-way
road with a barrier, toll road, curve-level elevated align-
ment, alignment on grade curve, rear-end collision, hillcr-
est straight alignment, alignment on grade straight, and
2-way road with separation (Figure 3b). This indicates an
association between sun glare-related rear-end collisions
on interstate or toll road one-way roads or 2-way roads
with a barrier or separation and alignment on grade
curve or grade straight, hillcrest straight alignment, or
curve-level elevated alignment. It is also associated with
the open country area and full access control.

Cluster 6. This cluster has 11 categories with positive resi-
dual means: open country area, curve-level elevated
alignment, straight-level elevated alignment, full control,
interstate, alignment on grade straight, hillcrest straight
alignment, U.S. highway, partial control, movement
before crash as a contributing factor, and rear-end colli-
sion (Figure 3c). This indicates an association between
rear-end collisions in open country areas on the inter-
state or U.S. highway and curve-level elevated alignment,

straight-level elevated alignment, alignment on grade
straight, or hillcrest straight alignment. It is also associ-
ated with either partial or full access control and move-
ment before the crash.

Discussion

The color heatmap format of Tables 3 and 4 provides a
quick glance of the percentage distribution of the cate-
gories by clusters and proportion odds of the categories
by clusters. The darkest shading indicates the cluster with
the most crashes for that category. Tables 3 and 4, along
with Figures 1 to 3, provide techniques for identifying the
primary categories within a cluster and their associated
implications.

Table 3 provides a brief overview of the distribution
of the variable categories in each cluster. Instead of nor-
malizing the categories by variable group, this approach
effectively represents which category is dominant in each
cluster type. The highest number in each row is displayed
with a darker red color. Table 4 lists the proportion odds
of the categories when compared with the original data-
set of sun glare-related crashes.

The key findings from these tables are discussed
below:

� Cluster 1 represents the sun glare-related crashes
that occur on business/industrial and mixed local-
ities. The odds values for the majority of the cate-
gories are not drastically higher. The other
categories with slightly higher odds are segment-
related crashes, state highways, city streets,
cloudy/foggy as weather conditions, and two-way
roadways with no separations.

� Cluster 2 shows higher odds for rain-related
crashes. The odds ratios are not drastically higher
in this cluster. The odds of intersection and U.S.
highways are also higher in this cluster.

� Cluster 3 and cluster 4 show higher odds for resi-
dential locality-related crashes. Other categories
with higher odds for these two clusters are fog/
smoke and rain as weather conditions, and curve,
hillcrest, and on grade alignments.

� Cluster 5 is associated with high proportions of
crashes on full access control roadways. Around
78% of crashes in this cluster occurred on full
access control roadways. For the original data,
this percentage is 54%. The proportion odds show
a high value of 15.45. The other categories with
higher odds value for this cluster are interstate
roadways, toll roadways, and two-way roadways
with a barrier. The properties of other categories
indicate that this cluster is mostly associated with
interstate-related sun glare-related crashes. It is
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important to note that only 5% of sun glare-
related crashes are associated with this cluster.

� Cluster 6 properties are also similar to cluster 5.
However, this cluster does not include toll road
crashes. The odds of curve-level elevated are dis-
proportionately higher in this cluster.

Conclusions

This study applied a relatively new categorical data anal-
ysis method that combines cluster analysis and corre-
spondence analysis to determine the key clusters of
crash-contributing factors in sun glare-related crashes. In

Table 3. Proportion of Categories in Different Clusters

Variable Category All data Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Season Fall 38.28 42.3 30.3 36.9 44.8 39.2 42.4
Season Spring 20.21 19 14.2 24.3 31.4 23 15.2
Season Summer 10.41 10.2 14 6.5 4.7 17.6 13.6
Season Winter 31.1 28.4 41.5 32.3 19.2 20.3 28.8
DOW FR 17.1 18.8 16.3 13.3 21.5 8.1 22.7
DOW MO 17.1 17.8 19.2 20.2 10.5 16.2 6.1
DOW SA 7.38 4.9 12.4 4.6 6.4 10.8 6.1
DOW SU 4.83 3.7 5.2 3.8 8.1 2.7 9.1
DOW TH 20.9 20.7 24.6 19.8 14 24.3 19.7
DOW TU 16.34 15.5 9.1 22.4 24.4 23 12.1
DOW WE 16.34 18.6 13.2 16 15.1 14.9 24.2
Int. No 54.41 61.3 20.2 63.1 82 78.4 69.7
Int. Yes 45.59 38.7 79.8 36.9 18 21.6 30.3
Access Full control 4.55 0 0 0 0 70.3 21.2
Access No control 89.45 94.7 92.5 95.4 95.9 24.3 65.2
Access Partial control 6 5.3 7.5 4.6 4.1 5.4 13.6
Hwy City street 31.52 40.7 30.1 37.3 19.8 1.4 13.6
Hwy Interstate 5.45 0 0 0 0 89.2 19.7
Hwy Parish road 22.69 13.9 2.1 45.6 75.6 0 4.5
Hwy State hwy 24.9 32.9 34.2 15.2 3.5 2.7 30.3
Hwy Toll road 0.14 0 0 0 0 2.7 0
Hwy U.S. hwy 14.69 11.5 33.4 1.9 0.6 4.1 28.8
Loc. Business cont. 33.31 37.8 58.3 14.4 1.2 23 24.2
Loc. Industrial 2.41 4.7 1.6 0.8 0 2.7 3
Loc. Mixed 31.03 44.4 39.6 18.3 4.1 9.5 27.3
Loc. Open country 5.1 0 0 0 0.6 64.9 37.9
Loc. Residential 21.72 12.1 0.5 51 67.4 0 6.1
Loc. Residential Scatt. 5.03 1 0 10.3 23.3 0 1.5
Loc. School/playground 1.38 0 0 5.3 3.5 0 0
Seve. Complaint 22.55 22.5 27.7 19.8 16.9 14.9 27.3
Seve. Moderate 6.97 7.2 6.2 7.6 7.6 8.1 4.5
Seve. No injury 70.07 70.1 65.8 72.2 75 75.7 66.7
Seve. Severe 0.41 0.2 0.3 0.4 0.6 1.4 1.5
Wea. Clear 95.31 95.3 94.8 97 95.9 93.2 92.4
Wea. Cloudy 4 4.5 4.1 2.3 2.9 5.4 7.6
Wea. Fog/smoke 0.14 0.2 0 0.4 0 0 0
Wea. Other 0.21 0 0 0 1.2 1.4 0
Wea. Rain 0.34 0 1 0.4 0 0 0
Road. 2-way no Sep. 66.69 74 50.8 79.1 94.8 4.1 53
Road. 2-way with barr. 3.17 2.7 1.3 2.7 2.3 17.6 6.1
Road. 2-way with Sep. 22.21 18.4 36 14.8 2.9 40.5 28.8
Road. One-way road 6.97 3.9 11.4 1.9 0 33.8 12.1
Road. Other 0.97 1 0.5 1.5 0 4.1 0
Align. Curve-level 3.86 3.1 1 3.4 12.2 4.1 6.1
Align. Curve-level-elev. 0.69 0 0 0 0 5.4 9.1
Align. Dip, hump-straight 0.14 0 0.3 0.4 0 0 0
Align. Hillcrest-curve 0.07 0 0 0 0.6 0 0
Align. Hillcrest-straight 0.9 0 0.5 0.4 1.7 5.4 4.5
Align. On grade-curve 0.41 0 0 0 1.2 4.1 1.5
Align. On grade-straight 0.69 0.4 0 0.8 0 4.1 4.5
Align. Straight-level 90.97 96.3 98.2 94.7 81.4 55.4 59.1
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addition to a low-dimensional approximation depicting
clusters and categories, there is a cluster partitioning of
individuals based on the profiles over the categorical
variables. Using 7 years (2010–2016) of crash data from
Louisiana, this study empirically determined the relative

contribution of key factors for different cluster groups.
Given that a crash is typically the complex and interre-
lated result of human, vehicle, roadway, and environ-
mental factors, this study contributes to the current
safety literature by identifying high-risk scenarios where

Table 4. Odds Ratio of the Variable Categories in Different Clusters

Variable Category Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Season Fall 1.11 0.79 0.96 1.17 1.02 1.11
Season Spring 0.94 0.7 1.2 1.55 1.14 0.75
Season Summer 0.98 1.34 0.62 0.45 1.69 1.31
Season Winter 0.91 1.33 1.04 0.62 0.65 0.93
DOW FR 1.1 0.95 0.78 1.26 0.47 1.33
DOW MO 1.04 1.12 1.18 0.61 0.95 0.36
DOW SA 0.66 1.68 0.62 0.87 1.46 0.83
DOW SU 0.77 1.08 0.79 1.68 0.56 1.88
DOW TH 0.99 1.18 0.95 0.67 1.16 0.94
DOW TU 0.95 0.56 1.37 1.49 1.41 0.74
DOW WE 1.14 0.81 0.98 0.92 0.91 1.48
Int. No 1.13 0.37 1.16 1.51 1.44 1.28
Int. Yes 0.85 1.75 0.81 0.39 0.47 0.66
Access Full control 0 0 0 0 15.45 4.66
Access No control 1.06 1.03 1.07 1.07 0.27 0.73
Access Partial control 0.88 1.25 0.77 0.68 0.9 2.27
Hwy City street 1.29 0.95 1.18 0.63 0.04 0.43
Hwy Interstate 0 0 0 0 16.37 3.61
Hwy Parish road 0.61 0.09 2.01 3.33 0 0.2
Hwy State hwy 1.32 1.37 0.61 0.14 0.11 1.22
Hwy Toll road 0 0 0 0 19.29 0
Hwy U.S. hwy 0.78 2.27 0.13 0.04 0.28 1.96
Loc. Business cont. 1.13 1.75 0.43 0.04 0.69 0.73
Loc. Industrial 1.95 0.66 0.33 0 1.12 1.24
Loc. Mixed 1.43 1.28 0.59 0.13 0.31 0.88
Loc. Open country 0 0 0 0.12 12.73 7.43
Loc. Residential 0.56 0.02 2.35 3.1 0 0.28
Loc. Residential scatt. 0.2 0 2.05 4.63 0 0.3
Loc. School/playground 0 0 3.84 2.54 0 0
Seve. Complaint 1 1.23 0.88 0.75 0.66 1.21
Seve. Moderate 1.03 0.89 1.09 1.09 1.16 0.65
Seve. No injury 1 0.94 1.03 1.07 1.08 0.95
Seve. Severe 0.49 0.73 0.98 1.46 3.41 3.66
Wea. Clear 1 0.99 1.02 1.01 0.98 0.97
Wea. Cloudy 1.13 1.03 0.58 0.73 1.35 1.9
Wea. Fog/smoke 1.43 0 2.86 0 0 0
Wea. Other 0 0 0 5.71 6.67 0
Wea. Rain 0 2.94 1.18 0 0 0
Road. 2-way no Sep. 1.11 0.76 1.19 1.42 0.06 0.79
Road. 2-way with barr. 0.85 0.41 0.85 0.73 5.55 1.92
Road. 2-way with Sep. 0.83 1.62 0.67 0.13 1.82 1.3
Road. One-way road 0.56 1.64 0.27 0 4.85 1.74
Road. Other 1.03 0.52 1.55 0 4.23 0
Align. Curve-level 0.8 0.26 0.88 3.16 1.06 1.58
Align. Curve-level-elev. 0 0 0 0 7.83 13.19
Align. Dip, hump-straight 0 2.14 2.86 0 0 0
Align. Hillcrest-curve 0 0 0 8.57 0 0
Align. Hillcrest-straight 0 0.56 0.44 1.89 6 5
Align. On grade-curve 0 0 0 2.93 10 3.66
Align. On grade-straight 0.58 0 1.16 0 5.94 6.52
Align. Straight-level 1.06 1.08 1.04 0.89 0.61 0.65
Align. Straight-level-elev. 0.09 0 0.18 1.27 9.47 6.67
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sun glare-related crashes are more likely to occur
through interactions with other related factors. The
research team developed six clusters with associated fac-
tors and provided odds ratio measures by the categories.
It is anticipated that these findings will provide a deeper
understanding of sun glare-related crashes. Most of the
countermeasures related to sun glare-related crashes are
based on safety precautions taken by the drivers. Drivers
who regularly confront sun glare issues in their regular
commutes should use anti-glare visors in the car. The use
of sunglasses during long-distance travel during daytime
could also be beneficial.

Although user-related precautions are dominant in
reducing sun glare-related crashes, there is potential in
the consideration of the safe system approach. Instead of
the traditional perspective of ‘‘improving human beha-
vior,’’ agencies can consider safe and sustainable design
to eliminate human errors. For example, road geometry
redirection or consideration of sun glare impact on road-
ways while building new roads can be considered as alter-
natives. Advanced warning messages with the capability
of providing wireless information about traffic control
devices can alert drivers in case there is any problem from
sun glare (28). In future, full self-driving mode in auto-
mated vehicles could also be instrumental in avoiding
human error.

The current study is not without limitations. One lim-
itation is that the data selection is primarily based on
police-reported crash narrative documents. Missing
information related to ‘‘sun glare’’ in the crash narrative
will prohibit the inclusion of the crash to be considered
as a sun glare-related crash. Additionally, this study is
limited to crash and roadway-level variables only. Note
that placement of the visor makes a lot of difference in
reducing sun glare crashes. Thus, inclusion of vehicle
type could provide information on the position of the
vehicle visor. The current study did not include ‘‘vehicle
type’’ because of disproportional missing value issues.
Future studies should examine the inclusion of vehicle
and driver-level variables to provide intuitive insights on
overall sun glare-related crashes.
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